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Cultivated watermelon (Citrullus lanatus subsp. vulgaris) has a

narrow genetic base due to domestication and breeding focusing

primarily on fruit quality traits. Bitter or bland-tasting wild

watermelons, such as C. mucosospermus, C. amarus and C.

colocynthis, have been used in watermelon breeding to introduce

disease resistance to modern cultivars (Levi et al., 2017). These

wild relatives are valuable sources for broadening the improve-

ment potential of cultivated watermelon, providing additional

functionally important genes and alleles that are absent in

cultivated watermelon. However, the lack of genome sequences

of these wild watermelon species has limited their utilization in

watermelon breeding.

In this study, we assembled high-quality reference genomes for

three wild watermelons. Three wild accessions were selected for

reference genome sequencing: C. mucosospermus USVL531-MDR,

C. amarus USVL246-FR2 and C. colocynthis PI 537277. PacBio

CLR sequences for USVL531-MDR and Illumina sequences for

USVL246-FR2 and PI 537277 were generated (Table S1; Figure S1)

and de novo assembled. Each of the resulting assemblies (Table S2)

was anchored to 11 chromosomes (Table S3; Figures S2 and S3;

Appendix S1). Quality assessments demonstrated high quality

of these assemblies (Appendix S1). The repeat-masked assemblies

(Table S4) were annotated for protein-coding genes. Gene

predictions in six watermelon reference genomes, including three

developed here and three published ones (Guo et al., 2019; Renner

et al., 2021; Wu et al., 2019), were improved through mapping

genes between assemblies with Liftoff (Shumate and Salzberg,

2021). A total of 21 676 to 22 764 protein-coding genes were

predicted in these six watermelon genomes (Table S5). Comparative

analysis revealed a large inter-chromosomal rearrangement involving

chromosomes 1 and 4 between C. colocynthis and the other three

Citrullus species, C. lanatus, C. amarus and C. mucosospermus

(Figure 1a; Figure S4). Good collinearity was found between the

entire chromosome 4 of C. colocynthis and chromosome 8 of melon

(Figure 1a), suggesting that C. colocynthis likely carried the ancestral

karyotype and that the inferred chromosome fission and fusion

events occurred approximately 4.54–2.41 Mya after the divergence

of C. colocynthis from other watermelons and before the separation

of C. amarus from C. mucosospermus and C. lanatus (Figure S5).

We resequenced 201 wild watermelon accessions. Combined

with the reference genomes and previously generated resequen-

cing data (Guo et al., 2019), a total of 547 watermelon accessions

were used in the watermelon super-pangenome construction,

including 349 C. lanatus (243 cultivars, 88 landraces and 18

C. lanatus subsp. cordophanus), 31 C. mucosospermus, 131

C. amarus and 36 C. colocynthis (Tables S6 and S7). Four species-

level pangenomes were first built (Figure S6a), each containing the

species-specific reference sequences, and a total of 24.5 Mb,

15.6 Mb, 18.3 Mb and 42.4 Mb non-redundant novel sequences

for C. lanatus, C. mucosospermus, C. amarus and C. colocynthis,

respectively, harbouring 2288, 583, 1922 and 2521 novel genes

that were absent in the species-specific reference genomes

(Table S8). The four species-level pangenomes were combined

into a Citrullus super-pangenome based on orthologous relation-

ships between genes from different species (gene to gene) and

between aligned genes and genomic regions without predicted

genes (gene to location) (Figure S6b; Appendix S1). As a result,
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34 910 orthologous groups, including 33 697 syntenic ortholo-

gous groups, 1166 orthologous groups without syntenic infor-

mation, and 47 species-specific groups, as well as 3145 singletons,

were obtained (Tables S9 and S10; Figure S7). A total of 28 607

(75.2%) orthologous groups contained genes or sequences from

all four species (Figure 1b), among which 27 438 (95.9%) had one

gene or one location in each species (1 : 1 : 1 : 1).

Resequencing reads of each watermelon accession were

aligned to the pangenome of its own species for detecting gene

presence/absence variations (PAVs). Accessions with insufficient

read coverage were excluded to control false calls of gene PAVs.

In the Citrullus super-pangenome, the content of core genes

(present in all accessions) was 63.7% (24 235 genes), much

lower than that in the species-level pangenomes (85.6%, 97.2%,

90.0% and 88.7% for C. lanatus, C. mucosospermus, C. amarus

and C. colocynthis, respectively) (Figures S8–S10), indicating

diverse genetic makeups among the four species. Genes with

different occurrence frequencies between watermelon species or

groups were identified (Tables S11–S14) and included those that

were under selection during watermelon domestication and

improvement (Table S15). 17 disease resistance-related genes

that were absent or present at low frequencies in the C. lanatus

gene pool while present at high frequencies in at least one of the

wild species gene pools were identified (Table S16).

We compared C. lanatus landrace to Kordofan melon

(Figures S11 and S12), recently found to be the possible direct

progenitor of cultivated watermelon (Renner et al., 2021), and

identified 123 domestication sweeps with a cumulative length of

Figure 1 Citrullus genus super-pangenome reveals variations in wild and cultivated watermelons. (a) Synteny among the genomes of melon and various

watermelon species. Genomic regions syntenic to C. colocynthis chromosomes 1 and 4 are highlighted in yellow and green, respectively. (b) Upset diagram

of orthologous groups among the four watermelon species. (c) Domestication sweeps detected through comparing landraces to Kordofan melons. Red

bars at the bottom indicate genomic regions under selection. (d) Nucleotide diversities in genome regions surrounding the ClTST2 gene in different

watermelon populations. (e) Comparison of fruit flesh sweetness between accessions carrying the two different alleles of ClTST2, using t-test with unequal

variance.
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17.62 Mb (Table S17) and harbouring 399 annotated genes,

among which 107 were in fruit quality QTLs (Figures 1c, S13 and

S14; Table S18). The Kordofan melons were not sweet with flesh

soluble solids content (SSC) ranging from 0.2 to 3.2 °Brix
(Table S19). The sugar transporter ClTST2 regulates sugar

accumulation in watermelon flesh (Ren et al., 2018). The

Kordofan melon line having the highest SSC carried the ClTST2

tandem duplication (Table S19; Figure S15; Appendix S1). A

genetic diversity reduction was observed in ClTST2 genomic

region in landraces compared to Kordofan melon (Figure 1d). This

ClTST2 tandem duplication became a predominant allele in

landraces (70 out of 86 accessions; 81.4%) and was almost fixed

in cultivars (238 out of 245 accessions; 97.1%) (Table S20). Fruit

flesh SSC levels were significantly higher in accessions carrying

the ClTST2 tandem duplication compared to the ones with only

one copy (Figure 1e). These results together suggested that the

ClTST2 tandem duplication was present in wild watermelon

populations and was selected during domestication likely due to

its important role in promoting sugar accumulation in fruits.

Collectively, our Citrullus super-pangenome provides insights

into watermelon evolution and domestication and serves as a

comprehensive resource for researchers and breeders to mine and

utilize genes in cultivated and wild watermelon species.
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