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Simultaneous profiling of chromatin 
architecture and transcription in single cells

Jiale Qu1,2,3,7, Jun Sun1,2,3,7, Cai Zhao1,2,3, Xinyi Liu1,2,3, Xinyao Zhang1,2,3, 
Shaoshuai Jiang1,2,3, Chao Wei1,2,3, Haopeng Yu4, Xiaoxi Zeng    4 , Lili Fan    5  
& Junjun Ding    1,2,3,4,6 

The three-dimensional structure of chromatin plays a crucial role in 
development and disease, both of which are associated with transcriptional 
changes. However, given the heterogeneity in single-cell chromatin 
architecture and transcription, the regulatory relationship between the 
three-dimensional chromatin structure and gene expression is difficult 
to explain based on bulk cell populations. Here we develop a single-cell, 
multimodal, omics method allowing the simultaneous detection of 
chromatin architecture and messenger RNA expression by sequencing 
(single-cell transcriptome sequencing (scCARE-seq)). Applying scCARE-seq 
to examine chromatin architecture and transcription from 2i to serum 
single mouse embryonic stem cells, we observe improved separation of cell 
clusters compared with single-cell chromatin conformation capture.  
In addition, after defining the cell-cycle phase of each cell through 
chromatin architecture extracted by scCARE-seq, we find that periodic 
changes in chromatin architecture occur in parallel with transcription 
during the cell cycle. These findings highlight the potential of scCARE-seq 
to facilitate comprehensive analyses that may boost our understanding of 
chromatin architecture and transcription in the same single cell.

Dynamic folding of the chromatin architecture has essential biological 
functions in eukaryotes1–6. At the large scale, chromatin is divided into 
A and B compartments, which are enriched for transcriptionally active 
and inactive regions, respectively7,8. However, current approaches 
to capture the three-dimensional (3D) chromatin structure7,9–12 and 
transcription13–16 are mainly based on millions of cells methodol-
ogy. As a result, the characteristics of each cell are concealed and 
the heterogeneity of cells makes it difficult to explain their relation-
ship17,18. To overcome this problem, previous studies developed many 
single-cell unimodal omics methods, including single-cell chromatin 

conformation capture (scHi-C)19–24 and single-cell transcriptome 
sequencing (scRNA-seq)25–27. Although these strategies are able to 
capture information from unpaired single cells, it is still not possible 
to explore the regulatory relationship between chromatin architecture 
and gene expression in the same single cell.

Recently, two strategies have been developed to link chromatin 
architecture and transcription. First are the computational strate-
gies28,29, which can infer cross-talk between the 3D chromatin structure 
and expression at the single-cell level using different models and algo-
rithms. These strategies rely on simulations and correlations based on 
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sequencing (NGS) is a promising approach that can generate integrated 
information from the same single cell and does not require special 
equipment, but research is still lacking.

Here, we developed an NGS-based method for the simultaneous 
detection of chromatin architecture and mRNA expression in single 
cells (scCARE-seq) by integrating Hi-C24 and nuclei RNA-sequencing 

information from unpaired cells, which cannot be compared with the 
actual relationship. Second, microscopy-based approaches30–33 can 
directly reveal spatial information for the genome and transcripts in sin-
gle cells. However, these methods rely on advanced optics equipment 
that limits their widespread application. As a complementary technol-
ogy to above methods, single-cell multiomics based on next-generation 
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Fig. 1 | Overview of scCARE-seq. a, scCARE-seq workflow for measuring scHi-C 
and scRNA in the same single cell. mRNA reverse transcription, genome digestion 
and ligation are performed in intact nuclei. After flow cytometry sorting an 
individual cell into each well, single cells were lysed. Tn5 was then added to each 
well for tagmentation. Finally, following preamplification of each cell library, each 

well was divided into two halves for DNA and RNA library amplification, using a 
pair of common adapter primers and RNA index primers, respectively. b, Track 
view displaying both contact matrices, insulation score, CTCF ChIP signal and 
RNA signals from 33–36 Mb of chromosome 17 (Chr. 17).
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(RNA-seq)34 in the same cell. To demonstrate the utility of scCARE-seq, 
we used it to generate joint profiles of chromatin architecture and tran-
scription from single mouse embryonic stem cells (mESCs) and to study 
their correlation during cell fate transition and the cell cycle. This new 
approach provides improved cell cluster separation compared with 
scHi-C and more perspectives on the regulatory programs underlying 
the connections between chromatin architecture and gene expression 
in diverse biological processes.

Results
Joint profiling of 3D genome and expression in single cells
The scCARE-seq approach integrates Hi-C and RNA-seq at the single 
cell level to evaluate the correlation between 3D chromatin structure 
and transcription in the same single cell (Fig. 1a, Extended Data Fig. 1a, 
Supplementary Table 1 and Methods). Briefly, mRNA reverse transcrip-
tion, genome digestion and ligation were performed in intact nuclei, 
and individual cells were sorted by flow cytometry into separate wells 
and lysed. After adding Tn5 transposase to each well for tagmenta-
tion, each cell library was preamplified and divided into two halves 
for DNA and RNA library amplification using their respective primer 
pairs. In addition, in accordance with a previously published diluted 
strategy to reduce frequency of nuclei multiplets to 7.4%35, we utilized 
cross-linking in a preparation diluted to 1 × 105 nuclei per milliliter and 
selected nuclei using fluorescence-activated cell sorting (FACS). To 
assess the ability of scCARE-seq to distinguish single cells, we designed 
a mixed-species experiment using HEK293T and mESCs. Our results 
revealed that the proportion of interspecies nuclei multiplets was 2.56% 
for both DNA and RNA partitions in the scCARE-seq datasets (Extended 
Data Fig. 1b). For simultaneous detection of chromatin architecture and 
mRNA expression in bulk cells (CARE-seq), oligo-biotin-dT was used 
for reverse transcription and Tn5 tagmentation was performed after 
cell lysis without single-cell sorting. The libraries were constructed 
after biotin enrichment.

To demonstrate whether both bulk and single-cell CARE-seq have 
the ability to profile similar patterns as the previous single-omics pro-
tocols, we adopted Hi-C methods9,10 and nuclei RNA-seq methods34 as 
representative methodologies for comparison. Examination of specific 
chromatin regions (Fig. 1b and Extended Data Fig. 2) indicated that the 
chromatin architecture and transcription detected by CARE-seq at both 
the bulk and single-cell level exhibited patterns similar to that of typical 
single-omics methods. Collectively, the results roughly demonstrated 
that our methods are capable of simultaneously capturing valuable 
information about 3D chromatin structure and transcription.

Simultaneous capture of 3D genome and expression in mESCs
To further evaluate the reliability and validity of CARE-seq in a same-cell 
population, we examined the two aspects of chromatin architecture 
and RNA expression at the bulk level. Regarding partition of the 3D 
chromatin structure, we demonstrated that CARE-seq was reproducible 
and captured similar global contact information as the Hi-C method9,10 
(Pearson r, 0.96; Spearman ρ, 0.96; stratum-adjusted correlation coef-
ficient (SCC)36, 0.98) (Fig. 2a and Extended Data Fig. 3b). In addition, 
we observed a high degree of correlation at the compartment and 
topologically associated domain (TAD) levels (Fig. 2b and Extended 

Data Fig. 3a,c,d). Similar interaction patterns were observed from a 
large-scale 1 Mb resolution to a fine-scale 10 kb resolution, and were 
quantified by SCC (Fig. 2c). The above results show that CARE-seq is 
comparable with single-omics Hi-C technology.

Regarding the expression partition, CARE-seq predominantly 
captured mRNA information from nuclei. Thus, we first demonstrated 
the relationship between the two typical methods and found that nuclei 
RNA-seq could represent cell RNA-seq (Fig. 2d), as confirmed by pre-
vious research34,37,38. Next, global analysis revealed a high correlation 
between the gene expression signals of CARE-seq and typical RNA-seq 
(Spearman ρ, 0.85; Fig. 2d and Extended Data Fig. 3g) and a high level of 
reproducibility (Spearman ρ, 0.92; Fig. 2d and Extended Data Fig. 3e,f).  
In addition, to determine whether the two methods can identity sim-
ilar genes with different expression levels, we ranked genes based 
on their expression, and calculated the Jaccard similarities between 
different quantiles of the two ranked gene sets. The high similarity 
coefficient suggested that CARE-seq reproduces similar genes to the 
traditional single-omics nuclei RNA-seq method at different expres-
sion levels (Fig. 2e). In particular, we observed a strong concord-
ance of the expressed profiles for the pluripotency genes Nanog and 
Sox2, and other expressed genes in mESCs (Fig. 2f and Extended Data  
Fig. 4). Therefore, CARE-seq is comparable with typical RNA-seq for 
the detection of transcription.

Altogether, from systematic comparisons with typical single-omics 
methodologies, we illustrated that CARE-seq can simultaneously and 
accurately capture chromatin architecture and mRNA expression in 
the same cell population.

The high-quality 3D genome and expression from scCARE-seq
We next systematically compared scCARE-seq data with other pub-
lished methods to confirm the quality of DNA and RNA (Supplementary 
Table 2 and Extended Data Fig. 5a). Single-cell level validation was based 
on the number of contacts and cis-to-trans (intrachromosomal contacts 
to interchromosomal contacts) ratio in the 3D chromatin structure, 
and the numbers of expressed genes and unique molecular identifiers 
(UMIs) in transcription. Bulk-level validation is based on the correlation 
coefficient between merged scCARE-seq data and typical bulk methods.

To show the data quality of the 3D chromatin structure at the 
single-cell level, we confirmed that the distribution of valid pairs and 
cis-to-trans ratio of scCARE-seq were analogous to other published 
scHi-C methods19–23,39–41 (Fig. 3a and Extended Data Fig. 5b). We also 
calculated cis long-range interactions (>20 kb) for each cell in the 
scCARE-seq data (median 52.04%; Extended Data Fig. 6a). Bulk-level 
data also showed a high degree of correlation between scCARE-seq 
and other methods (Fig. 3c and Extended Data Fig. 6b), including Hi-C 
(Pearson r, 0.92; Spearman ρ, 0.92; SCC, 0.91) and CARE-seq (Pearson r,  
0.94; Spearman ρ, 0.94; SCC, 0.94). Similar patterns in the contact 
heatmap further revealed that scCARE-seq can reproduce chromatin 
structure information at the bulk level (Fig. 3d and Extended Data 
Fig. 6c). In addition, we calculated the relative contact probability 
for the genome distance of single cells, and observed heterogeneity 
among individual cells (Extended Data Fig. 6d). Although the decay 
of biotin-based CARE-seq was smaller than that of the nonbiotin 
scCARE-seq, the distribution pattern of merged single cells was still 

Fig. 2 | CARE-seq provides an accurate method to simultaneously captures 
chromatin architecture and transcriptome in mESCs. a, Scatter plots show 
high correlation between contacts from CARE-seq versus Hi-C (left) and two 
technical replicates (right). Pairwise correlations between Hi-C matrices data 
of 500 kb were computed. The x and y axes show mean log1p values for the 
matrix. log1p means ln(1+x). b, Scatter plots show the correlation between the 
compartment score (left) and insulation score (right) for CARE-seq (DNA) versus 
Hi-C. The compartment and insulation scores were computed by Hi-C matrices 
data of 100 kb and 40 kb, respectively. c, Comparison of CARE-seq and Hi-C in 
the contact matrices of chromosome 1 at: 1 Mb resolution; 10–100 Mb at 250 kb 

resolution; 56–76 Mb at 50 kb resolution; 72–75 Mb at 10 kb resolution (left to 
right). Matrix similarity is evaluated by HiCRep at the corresponding resolution. 
d, Scatter plots show a high correlation for gene expression signals from total 
mRNA versus nuclear mRNA, nuclear mRNA versus CARE-seq (RNA) and two 
technical replicates (left to right). Pairwise correlations between genes are shown 
in counts per million (c.p.m.). The x and y axes show mean log(c.p.m.) values. e, 
Jaccard analysis indicating a high similarity coefficient in different percentages 
of top genes. f, Representative regions showing a consistent pattern of gene 
expression across datasets.
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similar to that of the cell population (Extended Data Fig. 6d). The above 
results suggest that the 3D chromatin structure data obtained using 
scCARE-seq were reliable.

To evaluate the quality of gene expression data at the single-cell 
level, in terms of UMIs and gene numbers, we also confirmed that 
scCARE-seq was not inferior to scRNA-seq in different single-cell 

multimodal omics studies42–47 (Fig. 3b and Extended Data Figs. 5c 
and 6e). Bulk-level analysis indicated a high correlation between 
the combined transcriptional data of scCARE-seq (Fig. 3e) and that 
of nuclei RNA-seq (Pearson r, 0.84; Spearman ρ, 0.81) and CARE-seq 
(Pearson r, 0.86; Spearman ρ, 0.84). Specifically, the expression 
profile of Klf4 and Tet1 in each cell illustrated both the consistency 
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and heterogeneity of single-cell technology (Fig. 3f and Extended 
Data Fig. 6f).

Taken together, both single-cell and bulk-level validation proved 
that scCARE-seq can capture high-quality 3D chromatin structure and 
gene expression data in the same single cell.

The relationship between 3D genome and RNA by clustering
Previous studies revealed that 3D chromatin structure and transcription 
are altered during development or disease pathogenesis4–6. However, 

the relationship between the 3D chromatin structure and transcription 
is difficult to interpret from bulk population and unpaired cell analy-
sis because of heterogeneity among individual cells17,18,28,29. Here, we 
applied scCARE-seq to examine this relationship during the cell fate 
transition of 2i mESCs to serum mESCs. Single cells were clustered 
on the basis of their gene expression profiles (Fig. 4a), and consistent 
with previous reports, 2i and serum cells were clearly separated41,48,49. 
However, we did not observe distinct cell groups when these cells were 
clustered based on valid contacts (Fig. 4a). 3D chromatin structures 
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Fig. 3 | scCARE-seq simultaneously captures high-quality chromatin 
architecture and transcriptome data in the same single cell. a,b, Comparison 
of scCARE-seq with other single-cell methods. Plots show numbers of (a) 
contacts (left) and cis-to-trans ratio (right) (n = 384, 150, 6,998, 4,272, 409, 8, 
4,098, 10 and 242 cells) and (b) UMIs (left) and expressed genes (right) (n = 192, 
16,437, 14,095, 2,946, 50,754, 9,277 and 21,859 cells). Boxplots were drawn from 
the lower quartile (Q1) to the upper quartile (Q3), with the mid line denoting 
the median and whiskers a maximum of 1.5× interquartile range (IQR); outliers 
are not indicated. CoTECH, combined assay of transcriptome and enriched 
chromatin binding; ECCITE, expanded CRISPR-compatible cellular indexing of 
transcriptomes and epitopes by sequencing; sci-CAR, jointly profiles single-cell 
chromatin accessibility and mRNA; SNARE-seq, droplet-based single-nucleus 
chromatin accessibility and mRNA expression sequencing. c, Scatter plots 

show the Spearman and Pearson correlation coefficients of contacts between 
merged scCARE-seq (n = 192) and bulk-level methods. Pairwise correlations 
were computed between Hi-C matrices data. The x and y axes show mean log1p 
values of the matrix. d, Comparison of contact heatmap of chromosome 3 
between scCARE-seq and Hi-C, at 1 Mb resolution (left) and 50–140 Mb at 250 kb 
resolution (right). Matrix similarity is evaluated by HiCRep at the corresponding 
resolution. e, Scatter plots show the Spearman and Pearson correlation 
coefficients of gene expression between merged scCARE-seq (n = 192) and 
bulk-level methods. Pairwise correlations between genes are given in c.p.m. The 
x and y axes show mean log(c.p.m.) values. f, Representative region showing a 
consistent transcriptional profile for gene expression across datasets generated 
using scCARE-seq, CARE-seq and nuclei RNA-seq.
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seem to have a weaker ability to phase cell types compared with tran-
scription information. Therefore, we proposed that scCARE-seq can 
improve cell clustering in scHi-C.

To further demonstrate that scCARE-seq can better present sub-
population information of the 3D chromatin structure in single cells, 
we showed that the adjacent transcriptional clusters had a higher cor-
relation coefficient at both the compartment and TAD levels (Fig. 4b).  
The chromatin contact matrices have a specific 3D chromatin struc-
ture in each cluster (Extended Data Fig. 7a,b). Moreover, we also 
observed that genes in compartment A exhibited higher activation 
than those in compartment B (Fig. 4c,d). We further explored whether 
the region of the compartment switch corresponded to changes in gene 
expression between clusters using published Hi-C data50. Our analysis 

demonstrated that structural changes could indicate a corresponding 
increase or decrease in gene expression between clusters (Extended 
Data Fig. 7c,d). These results suggested that structural changes are 
also associated with changes in gene expression within single-cell data 
combined clusters. Because cluster 5 has an insufficient number of 
cells, we did not compare it with the others. These results revealed that 
scCARE-seq can highlight differences in the 3D chromatin structure 
of different clusters. In addition, we found that 2i mESCs had more 
enhancer–promoter (E–P) interactions for the Nanog gene than serum 
mESCs. Meanwhile, 2i mESCs also exhibited higher Nanog gene expres-
sion levels (Fig. 4e,f), which was consistent with previous findings48. 
To examine the relationship between the number of E–P interactions 
and the expression of Nanog, we utilized a sorting strategy based on 

gfe

dc

ba

0.
75

SC
C

1

1.00

0.93

0.89

0.88

0.93

1.00

0.88

0.88

0.89

0.88

1.00

0.91

0.88

0.88

0.91

1.00

Cluste
r 3

Cluste
r 4

Cluste
r 1

Cluste
r 2

Cluster 3

Cluster 4

Cluster 1

Cluster 2

Insulation score

0.
65

0.
85

SC
C

1.00

0.80

0.80

1.00

0.79

0.76

0.74

0.77

0.79

0.74

0.76

0.77

1.00

0.78

0.78

1.00

Cluste
r 3

Cluste
r 4

Cluste
r 1

Cluste
r 2

Compartment score

t-SNE 1

t-S
N

E 
2

Cluster 4

Cluster 2

Cluster 1

Cluster 3

Cluster 5

–10 0 10

–30

–20

–10

0

10

20

Serum
2i

scCARE-seq (RNA)

1.00

0.81

0.68

0.66

0.81

1.00

0.66

0.64

0.68

0.66

1.00

0.76

0.66

0.64

0.76

1.00

Cluste
r 3

Cluste
r 4

Cluste
r 1

Cluste
r 2

Expression

0.
6

SC
C

0.
9

0.00039

8

9

10

11

12

2i Serum

lo
g 2(

c.
p.

m
. o

f N
an

og
)

Expression

122610K 122650K 122690K 122730K 122770K 122810K

Dppa3
Nanog

Slc2a3

E–P interactions of Nanog

Chr. 6

Genes

2i

Serum

scCARE-seq (DNA)

–10

0

10

20

100–10

t-SNE 1

t-S
N

E 
2

Serum
2i

Cluster 4

Cluster 2
Cluster 1

Cluster 3

Cluster 5

0.028

4

6

8

10

Cluster 4Cluster 2

Compartment A to B

0.078

4

6

8

Cluster 1 Cluster 3

Ex
pr

es
si

on

Ex
pr

es
si

on

Compartment B to A

9 × 10–10

0

5

10

0

4

8

12
2.3 × 10–9

Cluster 4Cluster 2Cluster 1 Cluster 3

Ex
pr

es
si

on

Ex
pr

es
si

on

0

0.5

1.0

Re
la

tiv
e 

ex
pr

es
si

on
 in

 N
an

og
 

High Low

0.029

E–P interactions

Fig. 4 | Transcriptional clustering reveals differences in 3D chromatin 
structure from 2i and serum single mESCs. a, Dimension reduction  
(t-SNE) visualization showing the clustering of single cells from scCARE-seq 
transcriptomic genes: c.p.m. values (upper) and scCARE-seq 3D chromatin 
structural valid pairs (lower). Each dot represents an individual cell and each 
color represents a cell cluster. b, Heatmaps showing the Spearman correlation 
coefficient of gene expression, compartment score and insulation score.  
c,d, Comparison of log2(c.p.m. + 1) values for genes in compartment A to 
B (c, n = 114 and 285, respectively) and compartment B to A (d, n = 749 and 
1,363, respectively) with cluster 1 versus cluster 3 (left) and cluster 2 versus 
cluster 4 (right). P values determined by one-sided Wilcoxon signed-rank test: 

0.078, 0.028, 2.3 × 10−9 and 9 × 10−10 from left to right. e, Interactions between 
enhancers and Nanog are represented by semi-circle connectors. f, Comparison 
of log2(c.p.m.) values of Nanog gene in each cell of the 2i condition (n = 192) and 
serum condition (n = 192). P value determined by one-sided Wilcoxon signed-
rank test: 0.00039. Boxplots were drawn from the lower quartile (Q1) to the upper 
quartile (Q3), with the mid line denoting the median and whiskers indicating 
maximum 1.5× IQR; outliers are not indicated. g, Single cells were categorized 
into high and low groups based on the number of E–P interactions >1. The high 
group consisted of seventeen 2i mESCs with a higher number of E–P interactions, 
and the low group comprised twenty-eight 2i mESCs with a lower number of E–P 
interactions. P value, one-sided Wilcoxon signed-rank test: 0.029.

http://www.nature.com/nsmb


Nature Structural & Molecular Biology

Technical Report https://doi.org/10.1038/s41594-023-01066-9

the E–P interaction count. Subsequently, we calculated the relative 
mean expression levels of Nanog in the two groups of single cells and 
found that single cells with more E–P interactions had higher expres-
sion levels of Nanog (Fig. 4g).

Overall, these results indicated that scCARE-seq can not only bet-
ter distinguish subgroups of 3D chromatin structure, but also be used 
to study the relationship between 3D chromatin structure and gene 
expression from the same single-cell data.
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Periodic changes to 3D genome and expression in the cell cycle
Although the dynamics of the 3D chromatin structure and transcrip-
tion during the cell cycle have been captured at the bulk and single-cell 
levels20,51,52, their regulatory relationship is poorly understood. There-
fore, we used scCARE-seq to study the correlation between chromatin 
architecture and transcriptional changes during the cell cycle. First, 
each cell was assigned to one of the five cell-cycle phases based on a 
previous strategy20, which utilized the distribution of contact distance 
scales in single cells from the 3D chromatin structure of scCARE-seq 
data (Fig. 5a, Extended Data Fig. 8a and Supplementary Table 3). This 
was consistent with cell-cycle related changes in chromatin architecture 
reported previously20. Moreover, we clustered all the single cells based 
on the chromatin interaction of each cell. Next, we assigned cell-cycle 
phase information to these single cells and observed a continuous 
timescale for the cell cycle (Fig. 5b,c and Extended Data Fig. 8b,c), which 
suggested that clustering of the 3D chromatin structure is susceptible 
to the cell cycle. In addition, according to the cell-cycle timescale, we 
found that the number of contacts increased significantly in the S phase 
(Fig. 5e), which was attributed to DNA replication in this phase. We also 
observed a similar phenomenon20; namely, the fraction of interchro-
mosomal contacts was lowest in the mitosis phase (Extended Data  
Fig. 8d), which might be related to the state transition from chromatin 
to chromosome. Therefore, we were able to use the chromatin architec-
ture revealed by scCARE-seq to phase the cell cycle. The relationship 
between Hi-C-based cell-cycle phasing and gene expression was further 
confirmed by the high expression of similar marker genes (Fig. 5d and 
Supplementary Table 4).

To further explore the correlation between chromatin architecture 
and transcription during the cell cycle, we focused on the overall trend 
in their changes from scCARE-seq. The distribution of contacts and E–P 
interaction numbers show periodic changes and a maximum in the S 
phase (Fig. 5e). We speculate that the increase in E–P interactions is also 
related to DNA replication. Furthermore, we observed that the overall 
trends in E–P interactions and expression levels were similar during the 
cell cycle; UMIs and the number of expressed genes were also relatively 
higher in the S phase (Fig. 5e and Extended Data Fig. 8e). To evaluate the 
relationship between E–P interactions and UMI at a single-cell level, we 
selected single cells from the upper and lower 25% of E–P interactions. 
Subsequently, we examined the UMI counts in these two groups of cells 
in both 2i and serum mESCs. The results showed that cells with a higher 
number of E–P interactions also exhibited higher UMI counts in both 
cell types (Fig. 5f and Extended Data Fig. 8f). Therefore, the increase in 
overall transcription level in single cells is associated with an increase 
in E–P interactions during the cell cycle.

To investigate whether differences in the expression of the marker 
genes were associated with a difference in chromatin structure at 
specific phases of the cell cycle, we identified marker genes between 
the Early S and Late S–G2 cell-cycle phases (Fig. 5g). Subsequently, 
we performed a gene ontology (GO) analysis and found that these 

genes were significantly enriched during ‘chromatin organization’ 
(Fig. 5h). By further aggregating the structural data for cells in each 
phase and examining the differences in structure of these ‘chromatin 
organization’-related marker genes, we discovered a high correla-
tion between the number of E–P interactions in these regions and 
the corresponding gene expression levels (Fig. 5i). To exemplify this 
correlation, we focused on the gene Exosc10, which participates in 
cell-cycle and mitotic progression53. Our analysis revealed that Exosc10 
exhibited more E–P interactions during the Late S–G2 phase, coincid-
ing with its higher expression levels (Fig. 5j,k). Moreover, we filtered 
expressed genes in E–P interactions from single cells in the Early S 
and Late S–G2 phases (Extended Data Fig. 8g), and found that genes 
from a specific phase were also enriched with GO terms related to the 
cell cycle in a similar phase (Extended Data Fig. 8h). Therefore, the 
increase in overall transcription in single cells is associated with an 
increase in E–P interactions during the cell cycle. In conclusion, our 
findings indicated that differences in expression of the marker genes 
were associated with changes in the 3D chromatin structure at specific 
phases of the cell cycle .

Taken together, these results illustrated that periodic changes in 
3D chromatin structure are in parallel with transcription during the 
cell cycle.

Discussion
Here we reported scCARE-seq, a single-cell multimodal omics method, 
that enabled the simultaneous detection of chromatin architecture and 
mRNA expression in single cells, and was comparable with previously 
established scHi-C and scRNA-seq methods. We also demonstrated the 
utility of scCARE-seq by applying it to 2i and serum mESCs, and found 
that our method was better able to reveal differences in 3D chromatin 
structure through transcriptional clustering. In addition, we revealed 
that periodic changes in chromatin architecture and transcription are 
interrelated in the cell cycle. These findings suggested that scCARE-seq 
is a promising tool for simultaneously identifying the cell fate and 
cell cycle of individual cells to solve the problem of interference from 
inconsistent cell-cycle phases during cell fate transition. In conclusion, 
scCARE-seq is an efficient method for joint profiling of 3D chromatin 
structure and transcription in single cells, and will provide further 
insight into embryonic development, cancer and other diseases. In 
addition, scCARE-seq can be used to identify rare cell types from dif-
ferent tissues40.

There are several advantages associated with scCARE-seq. First, it 
can simultaneously detect 3D chromatin structure and transcription 
at the single-cell level, which reflects the global relationship between 
3D chromatin structure and gene expression. Moreover, it does not 
require any special equipment and can be performed in most laborato-
ries. Overall, scCARE-seq is an NGS-based technique for simultaneous 
detection of 3D chromatin structure and transcription in single cells, 
and can complement microscopy-based approaches.

Fig. 5 | 3D chromatin structure and expression have interrelated periodic 
changes in single cells during the cell cycle. a, Single-cell contact decay profiles 
ordered by in silico inferred cell-cycle phasing, with approximate cell-cycle 
phases shown at the top of the profiles. Each column represents a single cell 
(upper). Selected phased and pooled contact maps (lower). b, Uniform manifold 
approximation and projection embedding showing the cell-cycle phase of single 
cells from scCARE-seq and the Malat1 gene expression level in each cell. Each dot 
represents an individual cell. c, Mean Malat1 gene expression in the different cell-
cycle phases. d, Mean gene expression of lists of cell-cycle specific marker genes 
averaged for each cell-cycle phase (n = 19, 195, 146 and 24 cells). e, Contacts, E–P 
interactions, UMIs and number of expressed genes per single 2i mESC. The black 
line represents the mean trend and shading represents confidence intervals of 
0.95. f, Comparison of UMI in single cells of the upper and lower groups in 2i mESCs. 
Selection was based on the upper and lower groups of each of 48 single cells 
(25%) ranked by number of E–P interactions. Boxplots were drawn from the lower 

quartile (Q1) to the upper quartile (Q3), with the mid line denoting the median and 
whiskers showing the maximum 1.5× IQR; outliers are not indicated.  
P value determined from one-sided Wilcoxon signed-rank test. g, Heatmap 
depicting RNA marker genes of Early S and Late S–G2 in serum mESCs. Columns 
represent single cells ordered by cell cycle, and rows represent different marker 
genes. h, The top GO terms were enriched using the marker genes in  
g. TGF, transforming growth factor; rRNA, ribosomal RNA. i, Comparison of E–P 
interactions for three upregulated and three downregulated marker genes between 
Early S and Late S–G2. Boxplots were drawn from the lower quartile (Q1) to the 
upper quartile (Q3), with the mid line denoting the median and whiskers showing 
the maximum 1.5× IQR; outliers are not indicated. P values were determined by one-
sided t-test. j, E–P interactions of Exosc10 represented by semicircular connectors. 
k, Comparison of relative mean E–P interactions (left) and relative mean expression 
levels (right) of Exosc10 gene in single cells of Early S (n = 86) and Late S–G2 (n = 94). 
P value determined from one-sided Wilcoxon signed-rank test.
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However, as with existing single-cell multimodal omics meth-
ods54, scCARE-seq data are still sparse. Therefore, the sensitivity of 
scCARE-seq needs to be improved and the number of single cells that 
can be detected needs to be scaled-up for more widespread application 
in biomedical research.

Online content
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Methods
Cell culture
mESCs were derived from a mixed (129X1 × 129S1) mouse, which was 
a gift from S. Gao. The HEK293T cell line was a gift from J. Wang. The 
serum medium consists of high-glucose DMEM (Hyclone, catalog no. 
SH30022.01), 15% (v/v) fetal bovine serum (LONSERA, S711-001S), 
1× GlutaMAX (Thermo Fisher Scientific, catalog no. 30050-061),  
1× MEM nonessential amino acids (Thermo Fisher Scientific, cata-
log no. 11140-050), 0.1 mM β-mercaptoethanol (Sigma, catalog no. 
M6250), 1× penicillin/streptomycin (Thermo Fisher Scientific, catalog 
no. 15140-122), 1% (v/v) nucleoside mix (Sigma) and 1,000 U ml−1 recom-
binant leukemia inhibitory factor (Millipore, catalog no. ESG1107). 
The serum-to-2i transition was accomplished by washing mESCs twice 
in PBS (Hyclone, catalog no. SH30256.01) and then switching to 2i 
medium. For 2i medium, cells were grown under culture conditions 
comprising 50% Neurobasal (Thermo Fisher Scientific, catalog no. 
21103-049), 50% DMEM/F12 (Thermo Fisher Scientific, catalog no. 
11330-032), 1× N-2 supplement (Thermo Fisher Scientific, catalog no. 
17502-048), 1× B-27 supplement (Thermo Fisher Scientific, catalog no. 
12587-010), 1× GlutaMAX (Thermo Fisher Scientific, catalog no. 30050-
061), 1× MEM nonessential amino acids (Thermo Fisher Scientific, 
catalog no. 11140-050), 0.1 mM β-mercaptoethanol (Sigma, catalog no. 
M6250), 1× penicillin/streptomycin (Thermo Fisher Scientific, catalog 
no. 15140-122), 1,000 U ml−1 recombinant leukemia inhibitory factor 
(Millipore, catalog no. ESG1107), 1 μM MEK inhibitor PD0325901 (Sell-
eck, catalog no. S1036) and 3 μM GSK3 inhibitor CHIR-99021 (Selleck, 
catalog no. S1263). The HEK293T cell line was cultured in high-glucose 
DMEM (Hyclone, catalog no. SH30022.01), supplemented with 10% 
(v/v) fetal bovine serum (LONSERA, catalog no. S711-001S). All cells 
were cultured at 37 °C with 5% CO2 and in feeder-free conditions on 
0.1% gelatin-coated dishes.

Tn5 preparation
Tn5 preparation followed a previously described procedure with 
minor modifications55,56. Tn5 gene was amplified from pTXB1-Tn5 
(Addgene, catalog no. 60240) and cloned into pET28a to construct 
the pET28a–6×His–Tn5 expression vector, which was transformed 
into BL21 (DE3) chemically competent cells. A single colony was 
inoculated and cultured in 30 ml of Luria–Bertani broth with kana-
mycin (50 μg ml−1) at 37 °C and 200 r.p.m. overnight, and then diluted 
to 600 ml in the same medium and cultured at 37 °C and 200 r.p.m. 
to an optical density at 600 nm of 0.6–0.8. Bacterial pellets were col-
lected and resuspended in bacterial lysis buffer (50 mM Tris–HCl pH 
8.0, 300 mM NaCl, 20 mM imidazole, 0.1% Triton X-100, 1× EDTA-free 
protease inhibitor cocktails (Roche, catalog no. 04693132001) and 
1 mg ml−1 lysozyme), on ice for 30 min and sonicated to lyse the 
bacteria. The lysates were spun at 3,800 g and 4 °C for 10 min to 
give the supernatant, and the solution was adjusted to contain 5 mM 
2-mercaptoethanol, 1 mM phenylmethyl sulfonyl fluoride and 1 M 
NaCl. Cell lysates were then added to 2 ml of 50% Ni-NTA agarose 
(Qiagen, catalog no. 30210) with equilibrating (50 mM Tris–HCl pH 
8.0, 1 M NaCl and 20 mM imidazole) and incubated for 1 h at 4 °C with 
rotation. After loading the sample, the Ni-NTA column was washed 
with 20–30 ml of wash buffer (50 mM Tris–HCl pH 8.0, 1 M NaCl, 
20 mM imidazole, 0.1% Triton X-100). Finally, Tn5 was eluted with 
4 ml of elution buffer (50 mM Tris–HCl pH 8.0, 1 M NaCl, 250 mM 
imidazole, 0.1% Triton X-100) and dialyzed in 1 L of 2× dialysis buffer 
(50 mM Tris–HCl pH 8.0, 0.2 M NaCl, 0.2 mM EDTA, 2 mM dithiothrei-
tol, 0.2% Triton X-100, 20% glycerol). The dialyzed protein solution 
was concentrated using an Amicon Ultra 30-kDa centrifugal filter 
(Millipore, catalog no. UFC803024) to 25 μM, and 1× volume of glyc-
erol was added before storage. Before the tagmentation reaction,  
purified Tn5 and annealed barcoded adapter were mixed in an 
equal molar ratio at a final concentration 12.5 μM and incubated at  
25 °C for 1 h.

scCARE-seq experimental procedure
Cell fixation. Digested single cells were resuspended at a concen-
tration of 0.1 million cells per milliliter of PBS before fixation, which 
largely eliminated multiple nuclei after FACS35. Cells were fixed in 1% 
formaldehyde (Sigma, catalog no. F8775) for 10 min at room tempera-
ture with rotation, and glycine (Sigma, catalog no. G7126) was added 
to quench the reaction at a final concentration of 125 mM for 5 min at 
room temperature with rotation. Cells were washed twice with ice-cold 
PBS containing 5 μl of RNaseOUT recombinant ribonuclease inhibitor 
(Invitrogen, catalog no. 10777-019) per milliliter via centrifugation 
at 4 °C, 1,000g for 5 min. One million cells were aliquoted into 1.5 ml 
RNase/DNase-free tube. The supernatant was discarded, and remain-
ing processes were undertaken or the cell pellets were flash-frozen in 
liquid nitrogen for storage at −80 °C.

Reverse transcription. The process was similar to that described previ-
ously34,46 with minor modifications. One milliliter of IGEPAL lysis buffer 
(10 mM Tris–HCl pH 7.5 (Invitrogen, catalog no. 15567-027), 10 mM 
NaCl (Sigma, catalog no. S5150), 3 mM MgCl2 (Invitrogen, catalog no. 
AM9530G) and 0.1% IGEPAL CA-630 (Sigma, catalog no. I8896), 1% 
SUPERase In RNase Inhibitor (Invitrogen, catalog no. AM2696) and 1% 
BSA (Sigma, catalog no. A7906)) was incubated with cells on ice in a 
1.5-ml RNase/DNase-free tube for 20 min, followed by centrifugation at 
4 °C, 1,000g for 5 min to remove the supernatant. After washing twice 
in 100 μl of lysis buffer, nuclei were suspended in 500 μl of ice-cold 
lysis buffer (IGEPAL lysis buffer without IGEPAL CA-630), 8 μl was trans-
ferred to RNase/DNase-free PCR tubes and 8 μl of sterile nuclease-free 
water was added. For each tube, 1.6 × 104 nuclei were mixed with 8 μl 
of 25 μM oligo-dT primer (5′-ACGACGCTCTTCCGATCTNNNNNNNN[
8 bp RNA barcode]TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTVN-3′,  
where ‘N’ is any base and ‘V’ is either ‘A’, ‘C’ or ‘G’) and 2 μl of 10 mM 
dNTP mix (Thermo Fisher Scientific, catalog no. R0191), denatured 
at 55 °C for 5 min and immediately placed on ice. Fourteen microlit-
ers of first-strand reaction mix, containing 8 μl of 5× Superscript IV 
first-strand buffer, 2 μl of 100 mM dithiothreitol, 2 μl of SuperScript 
IV reverse transcriptase (Invitrogen, catalog no. 18090050) and 2 μl of 
RNaseOUT was then added to each PCR tube. Reverse transcription was 
performed as follows: 4 °C for 2 min, 10 °C for 2 min, 20 °C for 2 min, 
30 °C for 2 min, 40 °C for 2 min, 50 °C for 2 min and 55 °C for 10 min. 
The supernatant was removed by centrifugation at 4 °C, 1,000g for 
5 min, leaving 3 μl.

Chromatin digestion. To each PCR tube was added 3 μl of 0.6% SDS at 
62 °C for 10 min. SDS was quenched by the addition of 15 μl of doubly 
distilled H2O (ddH2O) and 3 μl of 10% Triton X-100 and incubation at 
37 °C for 15 min. Then 3 μl of 10× NEBuffer 2 (NEB, catalog no. B7002S) 
and 3 μl of 25 U μl−1 MboI (NEB, catalog no. R0147M) were added and 
the chromatin was digested at 37 °C for 3 h.

Proximity ligation. The supernatant was removed, and 30 μl of 1× Liga-
tion Master Mix without T4 DNA ligase (3 μl of 10× NEB T4 DNA ligase 
reaction buffer (NEB, catalog no. B0202S), 3 μl of 10% Triton X-100, 
0.3 μl of 10 mg ml−1 BSA and 23.7 μl of ddH2O) was added to resuspend 
the nuclei. After removing the supernatant, 27 μl of Ligation Master 
Mix (3 μl of 10× NEB T4 DNA ligase reaction buffer, 3 μl of 10% Triton 
X-100, 0.3 μl of 10 mg ml−1 BSA, 1.5 μl of T4 DNA ligase (NEB, catalog 
no. M0202S), and 19.2 μl of ddH2O) was added. The sample was then 
incubated at 16˚C for 4 h. All supernatants were removed by centrifuga-
tion at 4 °C, 1,000g for 5 min, leaving 3 μl.

Second strand synthesis. After removing the supernatants, 65 μl 
of sterile nuclease-free water, 8 μl of mRNA Second Strand Synthesis 
buffer and 4 μl of mRNA Second Strand Synthesis enzyme (NEB, catalog 
no. E6111) were added to each tube, and second strand synthesis was 
carried out at 16 °C for 180 min.
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FACS and cell lysis. The nuclei were then passed through cell strain-
ers (40 μm) and stained with 4′,6-diamidino-2-phenylindole. Single 
nuclei were sorted into each well in 96-well plates and lysed in 3 μl of 
scReverse Crosslink Buffer (20 mM Tris–HCl pH 8.0 (Invitrogen, catalog 
no. 15568-025), 20 mM NaCl (Sigma, catalog no. S5150), 0.1% Triton 
X-100, 15 mM dithiothreitol, 1 mM EDTA pH 8.0 (Invitrogen, catalog no. 
15575-020), 1 mg ml−1 Proteinase K (Invitrogen, catalog no. 25530-049)  
and 0.5 μM carrier single-strand DNA)) at 55 °C for 2 h, 65 °C for 12 h 
and then at 70 °C for 30 min.

Tagmentation. Each well was mixed with 4 μl of ddH2O, 2 μl of 5× 
TAPS–DMF (50 mM TAPS-NaOH pH 8.5, 25 mM MgCl2, 50% dimethyl-
formamide) and 1 μl of 0.025 μM in-house Tn5, and incubated at 55 °C 
for 10 min, 72 °C for 5 min. Then, 2 μl of 0.5 mg ml−1 Proteinase K was 
added to each well using a multichannel pipette, and the reactions 
were incubated at 55 °C for 5 min, 65 °C for 25 min and 70 °C for 30 min.

Preamplification. Thirteen microliters of PCR mix, containing 0.5 μl 
of Mix preamplification primers (common primer, DNA primer, RNA 
primer, 40 μM each primer; Supplementary Table 1) and 12.5 μl of Q5 
High-Fidelity 2× Master Mix (NEB, M0492L), was added to each well. 
Preamplification was carried out using the following program: 72 °C for 
5 min, 98 °C for 30 s, 12–14 cycles of 98 °C for 10 s, 65 °C for 30 s, 72 °C 
for 1 min and a final 72 °C for 5 min. Previous primers were removed 
by the addition of 2 μl of 5 U μl−1 ExoI (NEB, M0293S) and incubation at 
37 °C for 60 min and 80 °C for 20 min. Each well was split (12 μl each) 
and transferred to two new 96-well plates for chromatin architecture 
and expression analysis, respectively.

Hi-C library preparation. Each well was mixed with 8 μl of PCR Mix 
(2.2 μl of ddH2O, 0.8 μl of Index DNA Primer Mix (10 μM Nextera index 
i5 and Nextera index i7), 5 μl of Q5 High-Fidelity 2× Master Mix) and then 
incubated at 98 °C for 30 s, four cycles of (98 °C for 10 s, 60 °C for 30 s, 
72 °C for 1 min) and a final 72 °C for 5 min. Products were pooled and 
purified by a DNA Clean and Concentrator-5 column (Zymo, D4013) 
with a fivefold volume of DNA binding buffer and 0.8× AMPure XP 
beads (Beckmann, catalog no. A63881).

mRNA library preparation. PCR was performed by the addition of 
8 μl of PCR Mix (2.2 μl of ddH2O, 0.8 μl of Index RNA Primer Mix (10 μM 
Truseq index i5 and Nextera index i7), 5 μl of Q5 High-Fidelity 2× Master 
Mix) and incubation at 98 °C for 30 s, ten cycles of 98 °C for 10 s, 65 °C 
for 30 s, 72 °C for 1 min and a final 72 °C for 5 min. Libraries were pooled 
and purified using a DNA Clean and Concentrator-5 column with a 
fivefold volume of DNA binding buffer and 0.8× AMPure XP beads.

Quantification and sequencing. Both scHi-C and scRNA-seq librar-
ies were quantified by Qubit 4 (Invitrogen, catalog no. Q33238) and 
quantitative real-time PCR. Libraries were sequenced on the Illumina 
platform.

CARE-seq
For cell populations, the main steps are similar to those of 
scCARE-seq. Specifically, oligo-biotin-dT (5′-ACGACGC[BiodT]
CTTCCGATCTNNNNNNNN[8 bp RNA barcode]TTTTTTTTTTTTT 
TTTTTTTTTTTTTTTTTVN-3′, where ‘N’ is any base and ‘V’ is either ‘A’, ‘C’ 
or ‘G’) was used for reverse transcription, and the restriction fragment 
ends were filled-in by addition of Fill-in Mix (0.4 mM bioticcan-14-ATP 
(Invitrogen, catalog no. 19524-016), 0.4 mM dCTP/dGTP/dTTP, 0.8 U μl−1 
DNA Polymerase I, Large (Klenow) Fragment (NEB, catalog no. M0210L)) 
and incubation at 37 °C for 1 h. Tn5 tagmentation was performed after 
ligation and cell lysis without single-cell sorting, followed by direct 
library construction after biotin enrichment. The biotin enrichment 
step is the same as in previous methods9. Then 50 μl of PCR mix (18 μl of 
ddH2O, 3 μl of 10 μM Nextera index i5 and 3 μl of 10 μM Nextera index i7),  

1 μl of 10 mg ml−1 BSA, 25 μl of Q5 High-Fidelity 2× Master Mix) was 
added to the sample. PCR amplification was performed in a thermal 
cycler: 98 °C for 30 s, 10–14 cycles of 98 °C for 10 s, 65 °C for 30 s and 
72 °C for 1 min, and a final 72 °C for 5 min. After PCR, the sample was 
purified using 0.6×/0.2× volume of AMPure XP beads.

Hi-C
Hi-C was performed according to a published protocol9,10, but the 
library preparation was optimized. Briefly, after sonication, the purified 
DNA per 0.5 million cells was added to tagmentation buffer (27 μl of 
ddH2O, 10 μl of 5× TAPS–DMF, 3 μl of 12.5 μM in-house Tn5). The sample 
was then enriched using Streptavidin T1 beads (Invitrogen, catalog no. 
65602). The PCR amplification and purification steps are the same as 
CARE-seq procedures described above.

RNA-seq
An optimized RNA-seq was based on previous research15. For each tube, 
3 μg of purified total RNA from mESCs was mixed with 4 μl of 12.5 μM 
oligo-dT primer and 1 μl of 10 mM dNTP mix, denatured at 55 °C for 
5 min and immediately placed on ice. Then 7 μl of first-strand reac-
tion mix, containing 4 μl of 5× Superscript IV First-Strand Buffer, 1 μl 
of 100 mM dithiothreitol, 1 μl of SuperScript IV reverse transcriptase 
and 1 μl of RNaseOUT was added to each PCR tube. Reverse transcrip-
tion was performed as follows: 4 °C for 2 min, 10 °C for 2 min, 20 °C 
for 2 min, 30 °C for 2 min, 40 °C for 2 min, 50 °C for 2 min and 55 °C for 
10 min. The supernatant was removed by centrifugation at 4 °C, 1,000g 
for 5 min, leaving 3 μl. Forty-eight microliters of sterile nuclease-free 
water, 8 μl of mRNA Second Strand Synthesis buffer and 4 μl of mRNA 
Second Strand Synthesis enzyme were added to each tube, and sec-
ond strand synthesis was carried out at 16 °C for 180 min. The sample 
was purified using 2× volume of AMPure XP beads or DNA Clean and 
Concentrator-5 column and eluted in 10 μl of H2O. The tagmentation 
reaction was initiated by mixing 27 μl of ddH2O, 10 μl of 5× TAPS–DMF 
and 3 μl of 12.5 μM in-house Tn5, and incubated at 37 °C for 20 min 
and 72 °C for 5 min. After purification, the PCR amplification and size 
selection steps are the same as CARE-seq procedures described above.

Nuclei RNA-seq
The procedures were based on previously described methods34,46. After 
cell harvest, reverse transcription was the same as for the scCARE-seq 
procedures described above. Then 65 μl of sterile nuclease-free water, 
8 μl of mRNA Second Strand Synthesis buffer and 4 μl of mRNA Second 
Strand Synthesis enzyme were added to the sample, and second strand 
synthesis was carried out at 16 °C for 180 min. Ten microliters of Reverse 
Crosslink Buffer (20 mM Tris–HCl pH 8.0, 20 mM NaCl, 0.1% Triton X-100, 
15 mM dithiothreitol, 1 mM EDTA pH 8.0 and 1 mg ml−1 Proteinase K)  
was added for cell lysis, followed by tagmentation. After purification, 
the PCR amplification and size selection steps are the same as CARE-seq 
procedures described above.

Data analysis
Preprocessing of scCARE-seq and CARE-seq data. bcl files were 
converted to FASTQ using bcl2fastq (v.2.20.0). To separate Hi-C and 
RNA information, reads of RNA information were identified by custom 
scripts using RNA barcode. Adapters and low-quality reads of Hi-C 
and RNA information were then trimmed with Trim Galore (v.0.6.6, 
https://github.com/FelixKrueger/TrimGalore). For Hi-C partition, 
Hi-C paired-end reads were aligned to the mm10 reference genome 
and paired using HiC-Pro57 (v.3.0.0, parameters: default settings). The 
data were then used to generate contact matrices and corrected with 
ice_norm58 (part of HiC-Pro). For each chromosome, the ICE-normalized 
10 kb, 40 kb, 50 kb, 100 kb, 250 kb, 500 kb, 1 Mb and 5 Mb resolution 
contact matrices were used for further analysis. For RNA partition, 
reads were aligned and counted using modified scRNA-seq pipeline 
of sci-CAR analysis46 (https://github.com/JunyueC/sci-CAR_analysis), 
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and mm10 was used as reference genome. EdgeR was used to analyze 
differential count data between mESC groups59. In addition, Hi-C and 
other RNA methods data processing are similar to the above steps, 
excluding the separation of Hi-C and RNA information step. For species 
mixing experiments, nuclei with less than 90% of DNA reads and 75% 
of RNA reads mapped to one species were classified as multiple cells35. 
RNA reads were aligned to a combined hg19 and mm10 genome and 
only primary alignments were considered60.

Hi-C correlation analysis. The correlation of Hi-C matrices was ana-
lyzed by hicCorrelate (part of hicexplorer61, v.3.7.1, parameters: ‘—range 
500000:3000000, --method = pearson, --log1p, --zMin 0, --zMax 1, 
--plotNumbers’). Regarding the compartment and insulation scores 
generated from GENOVA62 (v.1.0.0, https://github.com/robinweide/
GENOVA), the corresponding correlation was calculated by in-house 
R scripts using Spearman and Pearson methods.

RNA correlation analysis. The correlation of gene expression was ana-
lyzed by custom R scripts. We removed mitochondrial, ribosome-related 
genes and a few abnormal expressed genes. We then calculated the 
correlation coefficient using Spearman and Pearson methods in the 
remaining genes or highly expressed 25,000 genes of mESCs.

Visualization of chromatin architecture and expression. Track view 
was displayed using pyGenomeTracks63 (v.3.6), and parameters for Hi-C 
matrix: ‘depth = 700000 or 10000000, transform = log1p’, parameters 
for RNA bigwig: ‘summary_method = mean or max’. To generate Pear-
son’s correlation matrices, all sampled Hi-C valid pairs were transferred 
to ‘.hic’ format files using command of juicer64, and visualization in 
Juicebox (v.1.11.08, https://github.com/aidenlab/Juicebox). In addi-
tion, matrix plots in two experiments, relative contact probability and 
Saddle-analyses were performed using GENOVA62 to compare the 3D 
chromatin structure features.

Comparison of scCARE-seq chromatin architecture data with pub-
lished single-cell Hi-C data. To assess the quality of chromatin archi-
tecture data generated by scCARE-seq, we compared the number of 
nonduplicated mapped pairs and the cis-to-trans ratio with published 
single-cell Hi-C technologies19–22,39,40. The published datasets were down-
loaded from the National Center for Biotechnology Information (NCBI) 
Gene Expression Omnibus (GEO) under accession codes GSE48262, 
GSE80006, GSE94489, GSE80280, GSE121791 and GSE162511.

Comparison of scCARE-seq expression data with published 
single-cell multimodal omics expression data. To assess the reli-
ability of the expression profile generated by scCARE-seq, we com-
pared the UMI numbers and gene numbers with published single-cell 
multimodal omics technologies42–46. The published datasets were 
downloaded from the NCBI GEO under accession codes GSE117089, 
GSE126074, GSE158435, GSE152020 and GSE130399.

Compartment and TAD analysis. Principal component analysis was 
performed to detect active (A compartment) and inactive (B compart-
ment) chromatin regions along the genome using the HOMER65 (v.4.11) 
tool ‘runHiCpca.pl’ following the parameters ‘-res 1000000 -window 
2000000 -genome mm10’. Next, the sign of the PC1 value of each bin 
was reassigned to A or B compartments according to the gene density. 
A positive PC1 value represents the A compartment, which has a higher 
gene density, whereas a negative PC1 value represents the B compart-
ment. TAD boundaries were identified by TopDom66 (v.0.0.2) with a win-
dow size of 5 based on the 40 kb ICE-normalized matrices in this study.

Identification of single-cell compartment and single-cell TAD. The 
contact maps of scCARE-seq were imputed using the Higashi-analysis 
pipeline67 with default parameters. Single-cell A/B compartment 

detection and single-cell TAD identification were also utilized Higashi 
at 1 Mb and 40 kb resolution, respectively.

Identification of E–P interactions. The E–P interactions of different 
cell groups were imputed using the DeepLoop-analysis pipeline68 
with default parameters. Enhancers were defined by mESC H3K27ac 
chromatin immunoprecipitation (ChIP) seqencing69.

Clustering of scCARE-seq data in mESCs. We utilized Higashi67 soft-
ware to calculate dimensionality reduction and clustering of the scHi-C 
data. We used Seurat70 (v.4.1.0) to identify cell types after removing mito-
chondrial genes and using the ‘FindVariableFeatures’ function (param-
eters: selection.method = ‘vst’, nfeatures = 3000). Using the ‘ScaleData’ 
Function, we then performed principal component analysis with the 
‘RunPCA’ function (parameters: features = VariableFeatures). Then, 
t-distributed stochastic neighbor embedding (t-SNE) was calculated 
using ‘RunTSNE’ (parameters: features = VariableFeatures, tsne.method 
= ‘Rtsne’, dims=c(1,2,3)), ‘FindNeighbors’ (parameters: dims = 1:3),  
and ‘FindClusters’ (parameters: resolution = 0.5) functions. We identi-
fied five clusters which were identified with the ‘FindAllMarkers’ func-
tion (parameters: only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)  
in the R package Seurat.

In silico cell phasing over the cell cycle. Cell-cycle analysis was 
performed as described in a previous study20. Briefly, based on the 
original steps, we used UMAP information from Higashi67 to correct the 
cell-phasing results. Next, we combined 3D and RNA information for 
each cell to show how that information changes during the cell cycle.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Sequencing data have been deposited at the NCBI GEO with accession 
number GSE211395, using mm10 reference genome. Other public data-
sets used in this study were downloaded from NCBI GEO with acces-
sion numbers as follows: ChIP-seq (GSE90895; CTCF and H3K27ac), 
in situ Hi-C (GSE124342), 2013-Nagano (GSE48262), 2017-Flyamer 
(GSE80006), 2017-Nagano (GSE94489), 2017-Steven (GSE80280), 
2019-Tan (GSE121791), 2021-Tan (GSE162511), sci-CAR (GSE117089), 
SNARE-seq (GSE126074), CoTECH (GSE158435), Paired-Tag 
(GSE152020) and Paired-seq (GSE130399). Source data are provided 
with this paper.

Code availability
Custom scripts used in this study are available from https://github.
com/jsun9003/scCARE-seq.
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Extended Data Fig. 1 | Schematics for pre-amplification and construction of 
DNA/RNA libraries. a, Pre-amplification was achieved by primers mix to amplify 
nucleic acid numbers. DNA/RNA libraries construction was worked by specific 
DNA or RNA primers. b, Scatter plots showing the mapped DNA reads of Hi-C data 

(left) and mapped RNA -reads of RNA-seq data (middle) in hg19 and mm10 for 
each cell. And the fraction of human reads in DNA and RNA libraries for each cell 
(right). HEK293T refers to human embryonic kidney 293 T, and mESCs refers to 
mouse embryonic stem cells.
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Extended Data Fig. 2 | Overview of our method to simultaneously detect 3D chromatin structure and transcription. a,b, Track view displaying both contact 
matrices and RNA signals from 60-63 Mb of chromosome 10 (a) and 80-83 Mb of chromosome 15 (b).
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Extended Data Fig. 3 | Performance of CARE-seq in comparative analyses. 
a, Saddle plots: average contact enrichment between pairs of 500 kb regions 
arranged by their compartment scores and the difference was Hi-C compared 
to CARE-seq. The upper right quarter represents A-A interactions, the bottom 
left quarter represents B-B interactions. b, The similarity of different bulk 3D 
chromatin structure data was evaluated by HiCRep at 500 kb resolution per 
euchromosome (n = 19). The values represented the mean Stratum-adjusted 
Correlation Coefficient (SCC). The boxplots were drawn from lower quartile (Q1) 

to upper quartile (Q3), with the middle line denoting the median, whiskers  
with maximum 1.5 interquartile range (IQR) and outliers were not indicated.  
c, Dependence of contact probability on genomic separation for single cells  
from CARE-seq data (orange) and Hi-C data (black). d, Insulation profiles of 
CARE-seq and Hi-C over 40 kb bins in chromosomes 2. e-g, Scatter plots show the 
strong concordance of gene expression signals from two technical replicates in 
nuclear mRNA (g) and total mRNA (f), and total mRNA versus CARE-seq (g).
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Extended Data Fig. 4 | Comparison of CARE-seq and typical RNA-seq in gene expression profiles. Representative regions showing a consistent pattern of gene 
expression across datasets.
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Extended Data Fig. 5 | Comparison of 2i and serum mESCs from scCARE-
seq. a, The tables summarized the Hi-C (top) and RNA-seq data (bottom) of 
Supplementary Table 2, respectively. b,c, Comparison of scCARE-seq data from 
192 2i mESCs and 192 serum mESCs. The contacts numbers (left) and cis-to-trans 

ratio (right) (b); UMIs (left) and expressed gene numbers (right) (c). The boxplots 
were drawn from lower quartile (Q1) to upper quartile (Q3), with the middle line 
denoting the median, whiskers with maximum 1.5 interquartile range (IQR) and 
outliers were not indicated.
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Extended Data Fig. 6 | scCARE-seq data quality in mESCs. a, Distribution of 
cis long-range interactions (>20 kb) in the scCARE-seq data (n = 384, median = 
52.04%). b, The similarity between scCARE-seq Hi-C data and Hi-C or CARE-seq 
Hi-C data was evaluated by HiCRep at 500 kb resolution per euchromosome 
(n = 19). The values represented the mean Stratum-adjusted Correlation 
Coefficient (SCC). The boxplots were drawn from lower quartile (Q1) to upper 
quartile (Q3), with the middle line denoting the median, whiskers with maximum 
1.5 interquartile range (IQR) and outliers were not indicated. c, Comparison 
of contact heatmap of chromosome 3 between scCARE-seq and CARE-seq, at 
1 Mb resolution (left); 50–140 Mb/250 kb resolution (right). Matrix similarity is 

evaluated by HiCRep at the corresponding resolution. SCC, Stratum-adjusted 
Correlation Coefficient. d, Dependence of contact probability on genomic 
separation for single cells from scCARE-seq data (n = 192, yellow), combined 
scCARE-seq data from all cells (orange) and bulk CARE-seq data (black).  
e, Cumulative coverage percentage of genes detected in single cells compared 
to the bulk data. f, A representative region showing a consistent pattern of gene 
expression across datasets generated using scCARE-seq and CARE-seq. The 
transcriptional profiles are gene expression read counts from bulk (upper) and  
a total of 83 single cells (bottom).

http://www.nature.com/nsmb


Nature Structural & Molecular Biology

Technical Report https://doi.org/10.1038/s41594-023-01066-9

Extended Data Fig. 7 | The relationship between chromatin architecture 
and gene expression in the different cell clusters. a,b, Pearson’s correlation 
matrixes from different cell clusters. Contacts numbers in different clusters were 
sampled to same numbers and plot the balanced matrixes in Juicebox (version 
1.11.08). Pearson’s correlation coefficient was calculated under 1-Mb resolution. 
White frame shows the difference regions. c,d, Showing change in expression 

of the different clusters (top) in the compartment A to B (c) and compartment 
B to A (d), where the compartment switch was defined by published Hi-C data 
(bottom). 2i and serum have two replications, respectively. CS represents 
log2(compartment scores+1). The boxplots were drawn from lower quartile (Q1) 
to upper quartile (Q3), with the middle line denoting the median, whiskers with 
maximum 1.5 interquartile range (IQR) and outliers were not indicated.
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Extended Data Fig. 8 | The relationship between chromatin architecture  
and gene expression in the cell cycle. a, Saddle plots: average contact 
enrichment between pairs of 100 kb regions arranged by their compartment 
scores in the different cell cycle phases. b, Uniform manifold approximation 
and projection (UMAP) embedding showing the clustering of single cells from 
scCARE-seq 3D chromatin structural profiles. Each dot represents an individual 
cell and each color represents a cell cluster. c, GO enriched by marker genes of 
clusters in b. d, Percentage of inter-chromosomal contacts per single mESC in 
2i and serum were ordered by cell-cycle phasing and each cell was annotated 
by cell type colored the same as in a. The black line represents mean trend. 
Shadow represents the confidence intervals of 0.95. e, Similar to d, Contacts, 

E-P interactions, UMIs and number of expressed genes per single serum mESCs 
from left to right. f, Comparison of UMI in single cells of top and bottom group 
in 2i mESCs. The top and bottom groups were selected based on the top and the 
bottom each 48 single cells (25%) ranked by number of E-P interactions from 
highest to lowest. The boxplots were drawn from lower quartile (Q1) to upper 
quartile (Q3), with the middle line denoting the median, whiskers with maximum 
1.5 interquartile range (IQR) and outliers were not indicated. P value, one-sided 
Wilcoxon signed-rank test. g, Venn diagrams showing the expressed genes in E-P 
interactions of Early-S and LateS-G2 in e (right). h, Partial gene ontology (GO) 
terms, enriched by specific genes of Early-S and LateS-G2 in g, respectively.
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